Viewing file: LinearAlgebra.py (17.7 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# This module is a lite version of LinAlg.py module which contains # high-level Python interface to the LAPACK library. The lite versioho # only accesses the following LAPACK functions: dgesv, zgesv, dgeev, # zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf.
import Numeric import copy import lapack_lite import math import MLab import multiarray
# Error object class LinAlgError(Exception): pass
# Helper routines _lapack_type = {'f': 0, 'd': 1, 'F': 2, 'D': 3} _lapack_letter = ['s', 'd', 'c', 'z'] _array_kind = {'i':0, 'l': 0, 'f': 0, 'd': 0, 'F': 1, 'D': 1} _array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1} _array_type = [['f', 'd'], ['F', 'D']]
def _commonType(*arrays): kind = 0 # precision = 0 # force higher precision in lite version precision = 1 for a in arrays: t = a.typecode() kind = max(kind, _array_kind[t]) precision = max(precision, _array_precision[t]) return _array_type[kind][precision]
def _castCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.typecode() == type: cast_arrays = cast_arrays + (copy.copy(Numeric.transpose(a)),) else: cast_arrays = cast_arrays + (copy.copy( Numeric.transpose(a).astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays
# _fastCopyAndTranpose is an optimized version of _castCopyAndTranspose. # It assumes the input is 2D (as all the calls in here are).
_fastCT = multiarray._fastCopyAndTranspose
def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.typecode() == type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays
def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError, 'Array must be two-dimensional'
def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError, 'Array must be square'
# Linear equations def solve_linear_equations(a, b): one_eq = len(b.shape) == 1 if one_eq: b = b[:, Numeric.NewAxis] _assertRank2(a, b) _assertSquareness(a) n_eq = a.shape[0] n_rhs = b.shape[1] if n_eq != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t =_commonType(a, b) # lapack_routine = _findLapackRoutine('gesv', t) if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zgesv else: lapack_routine = lapack_lite.dgesv a, b = _fastCopyAndTranspose(t, a, b) pivots = Numeric.zeros(n_eq, 'i') results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0) if results['info'] > 0: raise LinAlgError, 'Singular matrix' if one_eq: return Numeric.ravel(b) # I see no need to copy here else: return multiarray.transpose(b) # no need to copy
# Matrix inversion
def inverse(a): return solve_linear_equations(a, Numeric.identity(a.shape[0]))
# Cholesky decomposition
def cholesky_decomposition(a): _assertRank2(a) _assertSquareness(a) t =_commonType(a) a = _castCopyAndTranspose(t, a) m = a.shape[0] n = a.shape[1] if _array_kind[t] == 1: lapack_routine = lapack_lite.zpotrf else: lapack_routine = lapack_lite.dpotrf results = lapack_routine('L', n, a, m, 0) if results['info'] > 0: raise LinAlgError, 'Matrix is not positive definite - Cholesky decomposition cannot be computed' return copy.copy(Numeric.transpose(MLab.triu(a,k=0)))
# Eigenvalues
def eigenvalues(a): _assertRank2(a) _assertSquareness(a) t =_commonType(a) real_t = _array_type[0][_array_precision[t]] a = _fastCopyAndTranspose(t, a) n = a.shape[0] dummy = Numeric.zeros((1,), t) if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zgeev w = Numeric.zeros((n,), t) rwork = Numeric.zeros((n,),real_t) lwork = 1 work = Numeric.zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, w, dummy, 1, dummy, 1, work, -1, rwork, 0) lwork = int(abs(work[0])) work = Numeric.zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, w, dummy, 1, dummy, 1, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = Numeric.zeros((n,), t) wi = Numeric.zeros((n,), t) lwork = 1 work = Numeric.zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, wr, wi, dummy, 1, dummy, 1, work, -1, 0) lwork = int(work[0]) work = Numeric.zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, wr, wi, dummy, 1, dummy, 1, work, lwork, 0) if Numeric.logical_and.reduce(Numeric.equal(wi, 0.)): w = wr else: w = wr+1j*wi if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w
def Heigenvalues(a, UPLO='L'): _assertRank2(a) _assertSquareness(a) t =_commonType(a) real_t = _array_type[0][_array_precision[t]] a = _castCopyAndTranspose(t, a) n = a.shape[0] liwork = 5*n+3 iwork = Numeric.zeros((liwork,),'i') if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zheevd w = Numeric.zeros((n,), real_t) lwork = 1 work = Numeric.zeros((lwork,), t) lrwork = 1 rwork = Numeric.zeros((lrwork,),real_t) results = lapack_routine('N', UPLO, n, a, n,w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = Numeric.zeros((lwork,), t) lrwork = int(rwork[0]) rwork = Numeric.zeros((lrwork,),real_t) results = lapack_routine('N', UPLO, n, a, n,w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = Numeric.zeros((n,), t) lwork = 1 work = Numeric.zeros((lwork,), t) results = lapack_routine('N', UPLO, n, a, n,w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = Numeric.zeros((lwork,), t) results = lapack_routine('N', UPLO, n, a, n,w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w
# Eigenvectors
def eigenvectors(a): """eigenvectors(a) returns u,v where u is the eigenvalues and v is a matrix of eigenvectors with vector v[i] corresponds to eigenvalue u[i]. Satisfies the equation dot(a, v[i]) = u[i]*v[i] """ _assertRank2(a) _assertSquareness(a) t =_commonType(a) real_t = _array_type[0][_array_precision[t]] a = _fastCopyAndTranspose(t, a) n = a.shape[0] dummy = Numeric.zeros((1,), t) if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zgeev w = Numeric.zeros((n,), t) v = Numeric.zeros((n,n), t) lwork = 1 work = Numeric.zeros((lwork,),t) rwork = Numeric.zeros((2*n,),real_t) results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work, -1, rwork, 0) lwork = int(abs(work[0])) work = Numeric.zeros((lwork,),t) results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = Numeric.zeros((n,), t) wi = Numeric.zeros((n,), t) vr = Numeric.zeros((n,n), t) lwork = 1 work = Numeric.zeros((lwork,),t) results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n, work, -1, 0) lwork = int(work[0]) work = Numeric.zeros((lwork,),t) results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n, work, lwork, 0) if Numeric.logical_and.reduce(Numeric.equal(wi, 0.)): w = wr v = vr else: w = wr+1j*wi v = Numeric.array(vr,Numeric.Complex) ind = Numeric.nonzero( Numeric.equal( Numeric.equal(wi,0.0) # true for real e-vals ,0) # true for complex e-vals ) # indices of complex e-vals for i in range(len(ind)/2): v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]] v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]] if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w,v
def Heigenvectors(a, UPLO='L'): _assertRank2(a) _assertSquareness(a) t =_commonType(a) real_t = _array_type[0][_array_precision[t]] a = _castCopyAndTranspose(t, a) n = a.shape[0] liwork = 5*n+3 iwork = Numeric.zeros((liwork,),'i') if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zheevd w = Numeric.zeros((n,), real_t) lwork = 1 work = Numeric.zeros((lwork,), t) lrwork = 1 rwork = Numeric.zeros((lrwork,),real_t) results = lapack_routine('V', UPLO, n, a, n,w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = Numeric.zeros((lwork,), t) lrwork = int(rwork[0]) rwork = Numeric.zeros((lrwork,),real_t) results = lapack_routine('V', UPLO, n, a, n,w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = Numeric.zeros((n,), t) lwork = 1 work = Numeric.zeros((lwork,),t) results = lapack_routine('V', UPLO, n, a, n,w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = Numeric.zeros((lwork,),t) results = lapack_routine('V', UPLO, n, a, n,w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return (w,a)
# Singular value decomposition
def singular_value_decomposition(a, full_matrices = 0): _assertRank2(a) n = a.shape[1] m = a.shape[0] t =_commonType(a) real_t = _array_type[0][_array_precision[t]] a = _fastCopyAndTranspose(t, a) if full_matrices: nu = m nvt = n option = 'A' else: nu = min(n,m) nvt = min(n,m) option = 'S' s = Numeric.zeros((min(n,m),), real_t) u = Numeric.zeros((nu, m), t) vt = Numeric.zeros((n, nvt), t) iwork = Numeric.zeros((8*min(m,n),), 'i') if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zgesdd rwork = Numeric.zeros((5*min(m,n)*min(m,n) + 5*min(m,n),), real_t) lwork = 1 work = Numeric.zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) work = Numeric.zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgesdd lwork = 1 work = Numeric.zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, iwork, 0) lwork = int(work[0]) work = Numeric.zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError, 'SVD did not converge' return multiarray.transpose(u), s, multiarray.transpose(vt) # why copy here?
# Generalized inverse
def generalized_inverse(a, rcond = 1.e-10): a = Numeric.array(a, copy=0) if a.typecode() in Numeric.typecodes['Complex']: a = Numeric.conjugate(a) u, s, vt = singular_value_decomposition(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*Numeric.maximum.reduce(s) for i in range(min(n,m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0.; return Numeric.dot(Numeric.transpose(vt), s[:, Numeric.NewAxis]*Numeric.transpose(u))
# Determinant
def determinant(a): _assertRank2(a) _assertSquareness(a) t =_commonType(a) a = _fastCopyAndTranspose(t, a) n = a.shape[0] if _array_kind[t] == 1: lapack_routine = lapack_lite.zgetrf else: lapack_routine = lapack_lite.dgetrf pivots = Numeric.zeros((n,), 'i') results = lapack_routine(n, n, a, n, pivots, 0) sign = Numeric.add.reduce(Numeric.not_equal(pivots, Numeric.arrayrange(1, n+1))) % 2 return (1.-2.*sign)*Numeric.multiply.reduce(Numeric.diagonal(a))
# Linear Least Squares def linear_least_squares(a, b, rcond=1.e-10): """solveLinearLeastSquares(a,b) returns x,resids,rank,s where x minimizes 2-norm(|b - Ax|) resids is the sum square residuals rank is the rank of A s is an rank of the singual values of A in desending order
If b is a matrix then x is also a matrix with corresponding columns. If the rank of A is less than the number of columns of A or greater than the numer of rows, then residuals will be returned as an empty array otherwise resids = sum((b-dot(A,x)**2). Singular values less than s[0]*rcond are treated as zero. """ one_eq = len(b.shape) == 1 if one_eq: b = b[:, Numeric.NewAxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n,m) if m != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t =_commonType(a, b) real_t = _array_type[0][_array_precision[t]] bstar = Numeric.zeros((ldb,n_rhs),t) bstar[:b.shape[0],:n_rhs] = copy.copy(b) a,bstar = _castCopyAndTranspose(t, a, bstar) s = Numeric.zeros((min(m,n),),real_t) nlvl = max( 0, int( math.log( float(min( m,n ))/2. ) ) + 1 ) iwork = Numeric.zeros((3*min(m,n)*nlvl+11*min(m,n),), 'i') if _array_kind[t] == 1: # Complex routines take different arguments lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = Numeric.zeros((lwork,), real_t) work = Numeric.zeros((lwork,),t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,-1,rwork,iwork,0 ) lwork = int(abs(work[0])) rwork = Numeric.zeros((lwork,),real_t) a_real = Numeric.zeros((m,n),real_t) bstar_real = Numeric.zeros((ldb,n_rhs,),real_t) results = lapack_lite.dgelsd( m, n, n_rhs, a_real, m, bstar_real,ldb , s, rcond, 0,rwork,-1,iwork,0 ) lrwork = int(rwork[0]) work = Numeric.zeros((lwork,), t) rwork = Numeric.zeros((lrwork,), real_t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,lwork,rwork,iwork,0 ) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = Numeric.zeros((lwork,), t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,-1,iwork,0 ) lwork = int(work[0]) work = Numeric.zeros((lwork,), t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,lwork,iwork,0 ) if results['info'] > 0: raise LinAlgError, 'SVD did not converge in Linear Least Squares' resids = Numeric.array([],t) if one_eq: x = copy.copy(Numeric.ravel(bstar)[:n]) if (results['rank']==n) and (m>n): resids = Numeric.array([Numeric.sum((Numeric.ravel(bstar)[n:])**2)]) else: x = copy.copy(Numeric.transpose(bstar)[:n,:]) if (results['rank']==n) and (m>n): resids = copy.copy(Numeric.sum((Numeric.transpose(bstar)[n:,:])**2)) return x,resids,results['rank'],copy.copy(s[:min(n,m)])
if __name__ == '__main__': from Numeric import *
def test(a, b):
print "All numbers printed should be (almost) zero:"
x = solve_linear_equations(a, b) check = b - matrixmultiply(a, x) print check
a_inv = inverse(a) check = matrixmultiply(a, a_inv)-identity(a.shape[0]) print check
ev = eigenvalues(a)
evalues, evectors = eigenvectors(a) check = ev-evalues print check
evectors = transpose(evectors) check = matrixmultiply(a, evectors)-evectors*evalues print check
u, s, vt = singular_value_decomposition(a) check = a - Numeric.matrixmultiply(u*s, vt) print check
a_ginv = generalized_inverse(a) check = matrixmultiply(a, a_ginv)-identity(a.shape[0]) print check
det = determinant(a) check = det-multiply.reduce(evalues) print check
x, residuals, rank, sv = linear_least_squares(a, b) check = b - matrixmultiply(a, x) print check print rank-a.shape[0] print sv-s
a = array([[1.,2.], [3.,4.]]) b = array([2., 1.]) test(a, b)
a = a+0j b = b+0j test(a, b)
|